If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+10x-3=0
a = 16; b = 10; c = -3;
Δ = b2-4ac
Δ = 102-4·16·(-3)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{73}}{2*16}=\frac{-10-2\sqrt{73}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{73}}{2*16}=\frac{-10+2\sqrt{73}}{32} $
| 11+3x=90 | | 7x+28+4=7x+2 | | -407.194=-783.657+t | | 15x+13=2(34x-1) | | 7p-3=5p+3 | | 3(z+11)^2-10=110 | | 3x-8/6-x/3=x/6+2 | | -6/5a=12 | | 15x+13=2(34x−1) | | (x-1)(x+1)(x+4)(3x+19)=0 | | 1/2(4+a)=-3/2a+4 | | 15w3-48w2+9w=0 | | 5w-8=7(w-4) | | 5x^2+13=83 | | -7.3x=-73 | | 8(x+2=3(x-5)-7(x+3) | | 2r^=72 | | -2(y-9)=8y-42 | | 4=0.7(x)^0.3 | | 5x÷2-25=15 | | 3(w-2)+6w=12 | | 5x+26=x+18 | | (3÷12)x+15=0 | | -5v+2(v+2)=34 | | -7(t-7)-(t+9)=1 | | -6(x)=(-6)(-6) | | -27+p=32 | | 17x+163x-12=18(10x+17 | | 12x+30=64 | | 10x^2-46x+48=0 | | 2(x-4)+6x=-16 | | 11m−16=12m+14 |